灯饰知识
灯饰知识:技术突破:MOS管封装能效限制解除法门
2017-02-10  浏览:42
灯饰之家讯:MOS管是半导体场效应管的简称。和MOS管相关的,大多数是与封装有关的问题。在一些条件相同的条件下,目前主流的几种封装其实是存在着一定的限制的。那么这些限制都有哪些,由如何寻找出突破呢?

目前几种主流的封装中存在着如下几种限制:

封装电感

内部焊线框架内的漏极、源极和栅极连接处会产生寄生电感。而源漏极电感将会以共源电感形式出现在电路中,将会影响MOSFET的开关速度。

封装电阻

MOSFET在导通时电阻即Rdson,这个电阻主要包括芯片内电阻和封装电阻。其中焊线等引入的封装电阻会因焊线数量的不同而有很大不同。

PN结到PCB的热阻

源极的热传导路径:芯片>焊线>外部引脚>PCB板,较长的热传导路径必然引起高热阻,且焊线较细较长,封装热阻会更高。

PN结到外壳的热阻

例如,标准的SO-8器件是塑封材料完全包封,由于塑料是热的不良导体,芯片到封装外壳的热传导很差。

改善的必要性

下面我们用例子说明一下改善这几方面的必要性。



图1

微处理器供电为例子,这是一个较为典型的BUCK同步整流的例子。简单分析可知。现时CPU的工作频率已经由MHz级转向GHz 级,工作电压为1.3V 左右。要求到供电电源上到MHz级电磁干扰在可控范围,输出电流0A~50A(考虑到笔记本电脑或平板电脑从“睡眠”到“大运算工作”,正常工作电流 10A~20A)。其典型输入电压为7.5V 到21V,电路中控制和续流用的功率器件普遍采用30V 的MOSFET。如图1所示。

此类电源系统的总体能效一般会要求在95%以上。

[NT:PAGE]

如何提高总体能效?

要提高总体能效,我们要先对损耗产生机理进行分析。在此BUCK 同步整流电路中存在着多种功率损耗,这里主要考虑的损耗为开关管(Q1)和续流管(SR 同步整流管、Q2)的损耗。

从SR-BUCK 电路的工作原理可知:

Q1开通时,Q1存在着导通损耗、驱动损耗;

Q1关断时,有输出电容带来的损耗;

而Q2在工作区间除了导通损耗、驱动损耗、开关损耗、还有体内二极管损耗问题。

借IR的实验图方便分析:



图2

其中:Td 续流电流流向体二极管时间段;

Tramp Vds因漏极电感产生正向压降;

Tq 积聚Coss与Qrr电荷时间段;

我们把这些损耗分为三部分,它们和电路、器件的相关性如下:

导通损耗

与MOSFET的 Rdson相关。这容易理解,且随着输出电流的提高,Rdson损耗也会相应地增加;

与体二极管的正向电压Vsd相关。死区时间时,续流电流不得不从MOSFET沟道转而流向体二极管,并由此产生额外的体二极管损耗。体二极管的导通时间很短,仅为50ns至100 ns左右,因而,这损耗经常忽略不计。但是,当输出电压和体二极管Vsd相近时,这损耗就不能忽略了。

[NT:PAGE]

栅极驱动损耗

取决于MOSFET的Qg。这也容易理解,MOSFET开启时,必须对栅极进行充电,栅极积聚总电荷量为Qg后MOSFET饱和导通。MOSFET关断时,则必须将栅极中的电荷放电至源极,这就意味着Qg将消散在栅极电阻和栅极驱动器中。

Qg与Rdson非线形反比。即并联多个MOSFET降低Rdson 而降低导通损耗时,因Qg增大令驱动损耗会相应增大。

Coss损耗与MOSFET的输出电容Coss相关。

Q2关断时,必须将输出电容充电至线电压,因此,在关断过程中产生的感应电量直接取决于MOSFET的Coss,且这些电量通过寄生电感、寄生电阻释放时将触发LC振荡,并会由此对Q2的Vds产生电压尖峰。

与MOSFET的反向恢复电荷Qrr有关

MOSFET关断时,必须将Qrr移走,这部分电量会加入到上面的LC振荡里。对一些专门为同步整流这方面设计的MOSFET器件来说,Qrr可以忽略不计,因为其对总功耗的影响微乎其微。

按上面的分类,容易看出,当输出电流小时,导通损耗相对小;输出电流大,导通损耗也相对大。而开关损耗(驱动损耗+输出电容损耗)变化不大。(想一下,笔记本电脑从“睡眠”到“正常工作”,工作电流范围:0A~20A。)

而三种损耗相对变化的幅度比例,我们再借IR的实测图例来说明。



图3

可看出,在轻负载条件下,导通损耗占总功耗的比例极低。在这种情况下,在整个负载范围内基本保持不变的开关损耗是主要损耗。但是,当输出电流较高时,导通损耗则成为最主要的损耗,其占总功耗的比例也最高。

[NT:PAGE]

因此,要优化SR MOSFET的效率,必须找到开关损耗与导通损耗之间的最佳平衡点。



图4

如图4所示。当Rdson超出最优值时,总功耗将随Rdson的提高而线性增加。但当Rdson降至低于最优值时,总功耗也会因输出电容的快速增加而急剧上升。如图在1毫欧以下时,Rdson仅下降0.5毫欧姆,便会令总功耗提高一倍,从而严重降低电源转换器的效率。

说到这里,我们回过头,看看上面说到的焊线式封装在封装电阻和封装电感两方面的局限。

封装电阻的局限

以现在使用到的30V同步整流SR MOSFET,可达1~2毫欧姆的的导通电阻,而TO220的封装电阻在1毫欧姆左右,这样封装电阻占总Rdson的比例高达50%以上。在耐压高一些的 MOSFET中(耐压高,Rdson相对高),这个比例会相对低一些。但和无引脚的SMD封装MOSFET比较,还是有一定差距的。看下面比较图:



图5

对同一工艺的MOS芯片,Rdson*Qg是相对固定值。选择封装电阻更低的封装形式,在低Rdson下,追求更低的Qg,更低的Coss,提供更多的选择。

[NT:PAGE]

封装电感的局限

上面提到,SR MOSFET关断时,Coss和Qrr的电荷通过寄生电感、寄生电阻释放时将触发LC振荡,这样会造成一个过冲高压。因此需要尽量减少寄生电感。



图6

如TO220封装的寄生电感为10nH左右,甚至更高。无引脚SMD封装,得益于其无引脚设计以及所采用的铜带或夹焊技术,寄生电感可大大降低至0.2nH左右。以12V同步整流级为例,只要用低电感封装来取代TO220封装,就能将过冲电压降低10V,参见图6。

当电压应力较小时,可以使用电压值更低的MOSFET,以进一步优化系统的总体性能。上面说到的“无引脚SMD封装”,现在市场上常见到的,如:DFN封装(各厂家有不同命名)。

DFN封装,是在SO-8的基础上,对焊线互连形式进行改进,用金属带、或金属夹板代替焊线,降低封装电阻、封装电感,并且改善了热阻。DFN封装的MOSFET,在低压同步整流应用上的优势是显而易见的,各大半导体厂家都专门针对此封装形式推出了不少器件产品。

灯饰之家是专注于灯饰,照明,灯具,照明灯具,灯饰大全的新闻资讯和各灯饰,照明,灯具,照明灯具,灯饰大全的装修效果图与建材网络营销等服务,敬请登陆http://dengshi.jc68.com/
更多»您可能感兴趣的文章:
更多»有关 灯饰 的产品:
阻垢缓蚀剂的作用

阻垢缓蚀剂的作用

价格:到店咨询

上海臭氧老化试验箱操作规程

上海臭氧老化试验箱操作规程

价格:66.00/台

客厅灯现代简约时尚水晶灯 吸顶灯长方形卧室灯餐厅灯灯具灯饰

客厅灯现代简约时尚水晶灯 吸顶灯长方形卧室灯餐厅灯灯具灯饰

价格:623.00/套

欧式壁灯仿古铜灯具灯饰 客厅 走廊 餐厅 卧室简欧艺术灯

欧式壁灯仿古铜灯具灯饰 客厅 走廊 餐厅 卧室简欧艺术灯

价格:533.50/套

西安Smart 510B全自动洗地机

西安Smart 510B全自动洗地机

价格:到店咨询

中式客厅灯饰 中式云石灯 中式灯具

中式客厅灯饰 中式云石灯 中式灯具

价格:到店咨询

易博仕铝方通吊顶木纹铝方通厂家直销

易博仕铝方通吊顶木纹铝方通厂家直销

价格:7.50/米

易博仕勾搭式垂帘铝挂片吊顶天花

易博仕勾搭式垂帘铝挂片吊顶天花

价格:8.50/米

供应易博仕氟碳铝单板幕墙铝单板厂家直销

供应易博仕氟碳铝单板幕墙铝单板厂家直销

价格:198.00/平方米

供应易博仕氟碳铝单板幕墙铝单板厂家直销

供应易博仕氟碳铝单板幕墙铝单板厂家直销

价格:198.00/平方米

易博仕铝天花吊顶明架跌级铝扣板600*600厂家直销

易博仕铝天花吊顶明架跌级铝扣板600*600厂家直销

价格:38.00/平方米

供应易博仕c型铝条扣 防风铝条扣天花厂家直销

供应易博仕c型铝条扣 防风铝条扣天花厂家直销

价格:38.00/平方米

  • 头条资讯
  • 发表评论 | 0评
  • 评论登陆
  • 移动社区 陶瓷之家 油漆之家 照明之家 五金之家 防盗之家 区快洞察 卫浴之家 全景之家 家居联盟 建材之都 老姚之家 灯饰之家 电气之家 全景头条 照明之家 防水之家 防盗之家 区快洞察 建材 双鸭山建材 鹤岗建材 鸡西建材 齐齐哈尔建材 太原建材 大同建材 阳泉建材 长治建材 晋城建材 朔州建材 晋中建材 运城建材 忻州建材 临汾建材 吕梁建材 雄安建材 720全景
    (c)2015-2017 ByBc.CN SYSTEM All Rights Reserved